#! https://zhuanlan.zhihu.com/p/626997324

格林函数法

笔记源代码(https://github.com/cjyyx/notes/tree/main/%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/%E6%95%B0%E7%90%86%E6%96%B9%E6%B3%95)

格林函数又称点源函数,代表一个点源在一定的边界条件和(或)初始条件下所产生的场,知道了点源的场就可以用叠加的方法求出任意源所产生的场。

格林公式

第一格林公式

\[\iint_{\Sigma} u \nabla v \cdot \mathrm{d} \boldsymbol{S} = \iiint_{T} \nabla \cdot(u \nabla v) \mathrm{d} V = \iiint_{T} u \Delta v \mathrm{~d} V+\iiint_{T} \nabla u \cdot \nabla v \mathrm{~d} V\]

第二格林公式

\[\iint_{\Sigma}(u \nabla v-v \nabla u) \cdot \mathrm{d} \boldsymbol{S}=\iiint_{T}(u \Delta v-v \Delta u) \mathrm{d} V\]

也就是

\[\iint_{\Sigma}\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) \mathrm{d} S=\iiint_{T}(u \Delta v-v \Delta u) \mathrm{d} V\] \[\text{其中 } \frac{\partial}{\partial n} \text{ 表示沿边界 } \Sigma \text{ 的外法向求导数。}\]

泊松方程的格林函数法

泊松方程

\[\Delta u=f(\boldsymbol{r}) \quad(\boldsymbol{r} \in T)\]

边界条件表示为

\[\alpha \frac{\partial u}{\partial n}+\beta u=\varphi(\boldsymbol{r}) \quad(\boldsymbol{r} \in \Sigma)\] \[\text{$\alpha=0, \beta \neq 0$ 第一边值问题或狄里希利(Dirichlet)问题} \\ \text{$\alpha \neq 0, \beta=0$ 第二边值问题或诺伊曼(Neumann)问题} \\ \text{$\alpha \neq 0, \beta \neq 0$ 第三边值问题或鲁宾(Rubin)问题}\] \[\text{若以 } v\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) \text{ 表示位于 } \boldsymbol{r}_{0} \text{ 点的单位强度的正点源在 } \boldsymbol{r} \text{ 点产生的场,则应有}\] \[\Delta v\left(r, r_{0}\right)=\delta\left(r-r_{0}\right)\]

泊松方程的基本积分公式 \(u\left(\boldsymbol{r}_{0}\right)=\iiint_{T} v\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) f(\boldsymbol{r}) \mathrm{d} V-\iint_{\Sigma}\left[v\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) \frac{\partial u(\boldsymbol{r})}{\partial n}-u(\boldsymbol{r}) \frac{\partial v\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)}{\partial n}\right] \mathrm{d} S\)

三种边值问题

第一边值问题 \(u(\boldsymbol{r})=\varphi(\boldsymbol{r}), \quad v(\boldsymbol{r})=0 \quad(\boldsymbol{r} \in \Sigma)\)

\[u\left(\boldsymbol{r}_{0}\right)=\iiint_{T} \mathrm{G}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) f(\boldsymbol{r}) \mathrm{d} V+\iint_{\Sigma} \varphi(\boldsymbol{r}) \frac{\partial \mathrm{G}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)}{\partial n} \mathrm{~d} S\] \[\text{其中,} \mathrm{G} \text{ 称为泊松方程第一边值问题的格林函数}\] \[\Delta \mathrm{G}\left(r, r_{0}\right)=\delta\left(r-r_{0}\right), \quad \mathrm{G}(\boldsymbol{r})=0 \quad(\boldsymbol{r} \in \Sigma)\]

第三边值问题

\[\alpha \frac{\partial u}{\partial n}+\beta u=\varphi(\boldsymbol{r}), \quad \alpha \frac{\partial v}{\partial n}+\beta v=0 \quad(\boldsymbol{r} \in \Sigma)\]

\[u\left(\boldsymbol{r}_{0}\right)=\iiint_{T} \mathrm{G}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) f(\boldsymbol{r}) \mathrm{d} V-\frac{1}{\alpha} \iint_{\Sigma} \mathrm{G}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) \varphi(\boldsymbol{r}) \mathrm{d} S\] \[\text{其中,} \mathrm{G} \text{ 称为泊松方程第三边值问题的格林函数}\] \[\Delta \mathrm{G}\left(r, r_{0}\right)=\delta\left(r-r_{0}\right), \quad \alpha \frac{\partial \mathrm{G}}{\partial n}+\beta \mathrm{G}=0 \quad(\boldsymbol{r} \in \Sigma)\]

第二边值问题

pass

格林函数的对称性

\[\mathrm{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\mathrm{G}\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right)\]

无界空间的格林函数

\[\text{无界域情形通常可得到有限形式的格林函数,即**基本解**。一般边值问题的格林函数可分解为两部分 } \\\mathrm{G} = \mathrm{G}_0 + \mathrm{G}_1 \text{,其中 } \mathrm{G}_0 \text{ 为基本解。} \mathrm{G}_0 \text{ 满足 } \Delta \mathrm{G}_0 = \delta(\mathbf{r} - \mathbf{r}_0) \text{。}\]

三维情况

其解为:

\[\mathrm{G}_0(\mathbf{r}, \mathbf{r}_0) = -\frac{1}{4 \pi} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}\]

二维情况

其解为:

\[\mathrm{G}_0(\mathbf{r}, \mathbf{r}_0) = -\frac{1}{2 \pi} \ln \frac{1}{|\mathbf{r} - \mathbf{r}_0|}\] \[\text{$\mathrm{G}_1$ 则满足相应的齐次方程(拉普拉斯方程)} \Delta \mathrm{G}_1 = 0 \text{ 及相应的边界条件。}\\而拉普拉斯方程的边值问题的求解是熟知的。\]

用电像法求格林函数

无穷大平面的第一边值问题

\[\left\{\begin{aligned} & \nabla^{2} \mathrm{G}=\delta\left(r-r_{0}\right) \\ & \left.\mathrm{G}\right|_{z=0}=0 \end{aligned}\right.\]

其解为

\[\begin{aligned} \mathrm{G}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)= & -\frac{1}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}+\frac{1}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{1}\right|} \\ = & -\frac{1}{4 \pi} \frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}} \\ & +\frac{1}{4 \pi} \frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}} \end{aligned}\] \[\left.\frac{\partial \mathrm{G}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)}{\partial n}\right|_{\Sigma} = -\left.\frac{\partial \mathrm{G}}{\partial z}\right|_{z=0}\]

球域以内的第一边值问题

\[\left\{\begin{aligned} & \nabla^{2} \mathrm{G}=\delta\left(r-r_{0}\right) \\ & \left.\mathrm{G}\right|_{r=R}=0 \end{aligned}\right.\]

其解为

\[\begin{aligned} \mathrm{G}\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) & =-\frac{1}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}+\frac{R}{r_{0}} \frac{1}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{1}\right|} \\ & =-\frac{1}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}+\frac{R}{r_{0}} \frac{1}{4 \pi} \frac{1}{\left|\boldsymbol{r}-\dfrac{R^{2}}{r_{0}^{2}} \boldsymbol{r}_{0}\right|} \end{aligned}\]

无穷大平面上凸起的半球的第一边值问题

像电荷已在图中标出,其解为

\[G\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right)=-\frac{1}{4 \pi}\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|}+\frac{1}{4 \pi}\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{(1)}^{*}\right|}+\frac{1}{4 \pi}\frac{R}{r_{0}}\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{(2)}^{*}\right|}-\frac{1}{4 \pi}\frac{R}{r_{0}}\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}_{(3)}^{*}\right|}\]

其中

\[\left\{\begin{aligned} \boldsymbol{r}_{0} & =\left(x_{0}, y_{0}, z_{0}\right) \\ \boldsymbol{r}_{(1)}^{*} & =\left(x_{0}, y_{0},-z_{0}\right) \\ \boldsymbol{r}_{(2)}^{*} & =\frac{R^{2}}{r_{0}}\left(x_{0}, y_{0}, z_{0}\right) \\ \boldsymbol{r}_{(3)}^{*} & =\frac{R^{2}}{r_{0}}\left(x_{0}, y_{0},-z_{0}\right) \end{aligned}\right.\]

含时间的格林函数法

一般强迫振动的定解问题是

\[u_{t t}-a^{2} \Delta u=f(\boldsymbol{r}, t)\] \[\left.\left(\alpha \frac{\partial u}{\partial n}+\beta u\right)\right|_{\Sigma}=\theta(M, t)\] \[\left.u\right|_{t=0}=\varphi(\boldsymbol{r}),\left.u_{t}\right|_{t=0}=\psi(\boldsymbol{r})\]

波动问题的格林函数满足定解问题

\[\mathrm{G}_{t t}-a^{2} \Delta \mathrm{G}=\delta\left(r-r_{0}\right) \delta\left(t-t_{0}\right)\] \[\left.\left(\alpha \frac{\partial \mathrm{G}}{\partial n}+\beta \mathrm{G}\right)\right|_{\Sigma}=0\] \[\left.\mathrm{G}\right|_{t=0}=0,\left.\mathrm{G}_{t}\right|_{t=0}=0\]

其对称性为

\[\mathrm{G}\left(\boldsymbol{r}, t ; \boldsymbol{r}_{0} , t_{0}\right)=\mathrm{G}\left(\boldsymbol{r}_{0},-t_{0} ; \boldsymbol{r},-t\right)\]

波动方程的解为

\[\begin{aligned} u(\boldsymbol{r}, t)= & \iiint_{T} \int_{0}^{t} \mathrm{G}\left(\boldsymbol{r}, t ; \boldsymbol{r}_{0}, t_{0}\right) f\left(\boldsymbol{r}_{0}, t_{0}\right) \mathrm{d} V_{0} \mathrm{~d} t_{0} \\ & +a^{2} \iint_{\Sigma} \int_{0}^{t}\left(\mathrm{G} \frac{\partial u}{\partial n_{0}}-u \frac{\partial \mathrm{G}}{\partial n_{0}}\right) \mathrm{d} S_{0} \mathrm{~d} t_{0} \\ & +\left.\iiint_{T}\left[\mathrm{G} u_{t_{0}}-u \mathrm{G}_{t_{0}}\right]\right|_{t_{0}=0} \mathrm{~d} V_{0} \end{aligned}\]